Encapsulation of Olive Leaves Extracts in Biodegradable PLA Nanoparticles for Use in Cosmetic Formulation

نویسندگان

  • Maritina Kesente
  • Eleni Kavetsou
  • Marina Roussaki
  • Slim Blidi
  • Sofia Loupassaki
  • Sofia Chanioti
  • Paraskevi Siamandoura
  • Chrisoula Stamatogianni
  • Eleni Philippou
  • Constantine Papaspyrides
  • Stamatina Vouyiouka
  • Anastasia Detsi
چکیده

The aim of the current work was to encapsulate olive leaves extract in biodegradable poly(lactic acid) nanoparticles, characterize the nanoparticles and define the experimental parameters that affect the encapsulation procedure. Moreover, the loaded nanoparticles were incorporated in a cosmetic formulation and the stability of the formulation was studied for a three-month period of study. Poly(lactic acid) nanoparticles were prepared by the nanoprecipitation method. Characterization of the nanoparticles was performed using a variety of techniques: size, polydispersity index and ζ-potential were measured by Dynamic Light Scattering; morphology was studied using Scanning Electron Microscopy; thermal properties were investigated using Differential Scanning Calorimetry; whereas FT-IR spectroscopy provided a better insight on the encapsulation of the extract. Encapsulation Efficiency was determined indirectly, using UV-Vis spectroscopy. The loaded nanoparticles exhibited anionic ζ-potential, a mean particle size of 246.3 ± 5.3 nm (Pdi: 0.21 ± 0.01) and equal to 49.2%, while olive leaves extract release from the nanoparticles was found to present a burst effect at the first 2 hours. Furthermore, the stability studies of the loaded nanoparticles' cosmetic formulation showed increased stability compared to the pure extract, in respect to viscosity, pH, organoleptic characteristics, emulsions phases and grid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-CfTXA-STxB chimeric antigen loading in PLA-PEG-PLA tri-block copolymers and its immunization in mice

Introduction: The venom of Jellyfish venom contains a variety of bioactive proteins that can be studied for vaccine application. Poly-Lactic Acid is a biodegradable polymer that is used in vaccine systems. The aim of this study was to encapsulate the C-CfTX1-STxB protein into PLA-PEG-PLA three-block copolymer and its immunogenicity study in mice. Materials and Methods: After purification, the p...

متن کامل

Micro- and Nano- encapsulation of Water- and Oil-soluble Actives for Cosmetic and Pharmaceutical Applications

Skin, hair and mucosal surfaces are useful targets for the delivery of active compounds, botanicals and, importantly, drugs. Encapsulation provides an invaluable tool to the cosmetic and/or pharmaceutical formulator, providing great flexibility in the choice of delivery mechanisms and excipients that can be used. Dispersions of solid lipid nanoparticles (SLNs) were prepared using biodegradable ...

متن کامل

Creep Behavior of Biodegradable Triple-Component Nanocomposites Based on PLA/PCL/Bioactive Glass for ACL Interference Screws

Background: The short-time creep behavior for a series of biodegradable nanocomposites which is used as implantable device into body is a crucial factor. In the current paper, we aimed to study the effect of bioactive glass nanoparticles (BGn) on creep and creep-recovery behaviors of PLA/PCL blends at different given load and different applied temperatures. Method: A series of biodegradab...

متن کامل

Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems

Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...

متن کامل

Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems

Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017